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An investigation of wave processes in liquids with vapour bubbles with interphase 
heat and mass transfer is presented. A single-velocity two-pressure model is used 
which takes into account both the liquid radial inertia due to medium volume 
changes, and the temperature distribution around the bubbles. An analysis of the 
microscopic fields of physical parameters is aimed a t  closing the system of equations 
for averaged characteristics. The original system of differential equations of the 
model is modified to a form suitable for numerical integration. An elliptic equation 
is obtained to determine the field of the mixture average pressure a t  an arbitrary 
time through the known fields of the remaining quantities. The existence of the 
steady structure of shock waves, either monotonic or oscillatory, is proved. The effect 
of the initial conditions, shock strength, volume fraction, and dispersity of the 
vapour phase and of the thermophysical properties of the phases on shock-wave 
structure and relaxation time is studied. The influence of nonlinear, dispersion and 
dissipative effects on the wave evolution is also investigated. The shock adiabat for 
reflected waves is analysed. The results obtained have proved that the interphase 
heat and mass transfer determined by the thermal diffusivity of the liquid greatly 
influences the wave structure. The possible enhancement of disturbances in the 
region of their initiation is shown. The model has been tested for suitability and the 
results of calculations have been compared with experimental data. 

1. Introduction 
Vapour-liquid media are interesting from the viewpoint that owing to nonlinear, 

dispersion and dissipative effects the wave patterns in them may be diverse and 
easily altered by varying the hydrodynamic conditions, structure and thermo- 
physical properties of the mixture, as well as the interphase interaction (mass, 
momentum and energy). The distinctive features exhibited by a bubbly liquid in 
dynamic processes are connected with local deformation inertia, when the volume of 
the medium is changed owing to a change in the bubble volume, as well as with the 
elasticity of compression of the gas inside the bubbles. The above inertia, which may 
be viewed as the inertia of the added liquid mass to the bubble in its radial motion 
described by the Rayleigh-Plesset equation, and elasticity of compression lead to 
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non-holonomicity of the equation of state containing the medium pressure p which 
depends not only on the medium density p but also on its first and second derivatives, 
p and p 

where p ,  is the gas pressure in the bubbles. Kogarko (1961) was the first to report the 
dependence of p on P. 

Liquid deformation inertia and gas elasticity of compression lead to bubble 
pulsations and, eventually, to oscillatory waves (Batchelor 1969 ; Wijngaarden 
1970). The propagation of pressure waves in bubbly media may cause vapour-phase 
condensation (condensation waves), thereby radically altering the physical structure 
of the medium. 

Shock waves in liquids with bubbles of an insoluble and non-condensable (inert) 
gas have been investigated theoretically and experimentally (Batchelor 1969 ; 
Wijngaarden 1970, 1972; Kutateladze et al. 1972; Gel’fand et al. 1973; Noordzij 
1973; Noordzij & Wijngaarden 1974; Nigmatulin, Khabeev & Shagapov 1974; 
Nigmatulin & Shagapov 1974 ; Gubaidulin, Ivandaev & Nigmatulin 1976 ; Aidagulov, 
Khabeev & Shagapov 1977; Kuznetsov et al. 1978; Drumheller, Kipp & Bedford 
1982 ; Tan & Bankoff 1984). 

An analysis has been undertaken (Nigmatulin et al. 1974 ; Nigmatulin & Shagapov 
1974) that allows for non-equilibrium effects caused by the inertia and viscosity of 
the liquid in its radial motion around the bubbles and by the translational motion 
of the bubbles relative to the carrier liquid, as well as by a finite thermal conductivity 
of the gas (thermal non-equilibrium). It is shown that the structure of the steady 
wave in a gas-liquid mixture with bubbles of constant mass has an appreciable 
thickness (for bubbles with a radius of - 1 mm this thickness is of the order of 1 m), 
and that for not too viscous liquids the two-velocity inertial and viscous effects due 
to bubble longitudinal motion relative to the liquid are hardly noticeable against the 
background of the interphase heat-transfer effects determined by the gas thermal 
diffusivity . 

An investigation of transient waves has revealed the effect of shock-wave 
enhancement, when a shock pulse is divided into solitary waves (solitons) the 
amplitudes of which may greatly exceed the initial pulse amplitude (Nigmatulin 
1982). The effect results from the previously mentioned local deformation inertia of 
a bubbly liquid which can compress even though the loading has already been 
removed. This effect depends strongly on the signal duration, volume concentration 
of the bubbles and, strange as it may seem, on the properties of the gas. 

The propagation of waves in a liquid with vapour bubbles has been investigated 
by Trammel1 (1962), Nakoryakov & Shreiber (1979), Pokusaev (1979), Azamatov & 
Shagapov (1981), Nakoryakov et al. (1984), Nigmatulin et al. (1982) and Zuong Ngok 
Hai, Nigmatulin & Khabeev (1982, 1984). In work by Borisov et al. (1977), Deksnis 
(1978), Gel’fand et al. (1978) and Borisov et al. (1982) the effect of a strong local 
increase in the intensity of the waves propagating through the mixture was 
experimentally observed and it was discovered that waves in these media may have 
a peaky structure. Borisov et al. (1977, 1982) showed that the anomalous growth of 
pressure in a bubbly vapour-liquid medium during wave propagation is connected 
with fragmentation of large bubbles into numerous small ones and a rapid 
condensational collapse of the latter. As a result, the kinetic energy of the liquid 
radial motion around the bubbles is transformed into the energy of compression of 
the liquid. 
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Nigmatulin, Khabeev & Nagiev (1979), Zuong Ngok Hai et al. (1982, 1984), 
Nigmatulin et al. (1982) proved theoretically that in these media, owing to radial 
motion around bubbles, the waves may have a peaky structure ; and the effect of a 
pressure increase in the wave was estimated in terms of the cell model. A review of 
modern problems connected with shock-wave propagation in bubbly vapour-liquid 
media is given elsewhere (Nigmatulin 1982 ; Gubaidullin et al. 1982). 

I n  the present work the evolution of non-stationary shock waves of moderate 
intensities and pulse disturbances of finite lengths in a liquid with vapour bubbles 
has been studied on the basis of the complete system of differential equations. The 
structure of a steady or limiting shock wave, formed as a result of a steady or 
sufficiently prolonged action on the mixture, has been investigated. The reflection of 
shock waves from a rigid wall has been considered on the basis of the shock-wave 
discontinuity equations. 

2. Basic equations 
Wave processes in a bubbly liquid are considered here using continuum-mechanics 

methods under the following basic assumptions : 
(i) the distances over which the flow parameters (for example, oscillatory 

wavelengths) vary significantly are much larger than the distances between the 
bubbles, which are themselves much larger than the bubble diameters (i.e. the 
volume fraction of the vapour phase is small enough, a, 5 0.1); 

(ii) the mixture is locally monodispersed, i.e. in each material volume all the 
bubbles are spherical and of the same radius ; 

(iii) viscosity and thermal conduction are important only in the processes of 
interphase interaction and, in particular, in bubble pulsations ; 

(iv) nucleation, fragmentation, interaction and coagulation of the bubbles are 
absent ; 

(v) the velocities of the macroscopic motion of the phases coincide. 
The last assumption allows us to describe bubble volume changes, temperature 

distributions around the bubbles, condensation and evaporation in terms of the 
spherically symmetrical model using the equations for bubble radial pulsations and 
radial thermal conduction of the liquid. This assumption originates from the fact 
that  for vapour bubbles the role of the interphase heat and mass transfer becomes 
greater than for gas bubbles, and the two-velocity effects are therefore less significant 
on the background of thermal dissipation (Nigmatulin et al. 1974; Zuong Ngok Hai 
et al. 1982). As far as suspensions in gases are concerned, two-velocity effects play a 
decisive role in wave dynamics, whereas in bubbly liquids these effects are 
insignificant because the relative velocity of the bubbles is small if compared with 
the velocities of the phases (Nigmatulin & Shagapov 1974; Nigmatulin 1982; 
see also experiments by Kalra & Zvirin 1981). Nevertheless, it  should be borne in 
mind that the interphase heat and mass transfer in strong shock waves may be 
more intense than predicted by the spherically symmetrical model owing to an 
increase in the interfacial surface caused by deformation and fragmentation of the 
bubbles. 

Under the assumptions listed above the vapour-liquid medium can be considered 
within the framework of a model of two interacting and interpenetrating continuous 
media, viz. the carrier liquid and the vapour phase (Nigmatulin 1978). In the 
Lagrangian system of coordinates (6 ,  t )  the equations of conservation of mass, bubble 
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number density and of momentum of the mixture for one-dimensional motion are as 

where the subscripts i = t, v refer to the parameters of the liquid and vapour, 
respectively, the subscript 0 referring to the parameters of the initial equilibrium 
state ; ai, pi,  p i ,  p: are the volume fraction, pressure, mean and true densities of the ith 
phase, respectively, v is the longitudinal velocity, n is the number of bubbles per unit 
volume, R is the bubble radius, j is the rate of phase transition per unit interfacial 
surface 0' > 0 for evaporation and j < 0 for condensation), g is the intensity of the 
external mass forces, CT is the coefficient of surface tension, 5 is the Lagrangian 
longitudinal coordidate and t is the time. In this case the relationship between the 
Eulerian and Lagrangian coordinates is expressed by the following relationship 
(Sedov 1984) : 

Y ( t 1  t )  = [ v ( t ,  7) d7. 

Note that, by virtue of assumption (i) (a, < l ) ,  from (2) it follows that the average 
pressure p in the mixture practically coincides with the pressure in the liquid phase 
(P x Pi) .  

An equation for a change in the mass of an individual bubble can be obtained from 
the equations of conservation of the mass of the vapour phase and the bubble 
number density ( 1 )  : a 

(3R3&) = 4=R2j. 

The system of hydrodynamic equations ( 1 )  will be closed if the equation of state, 
the condition of the simultaneous deformation of the phases and the equation 
for determining the phase transition rate j are assigned. The evolution of pressure 
waves of moderate intensities can be considered under the following additional 
assumptions : 

(a)  the carrier liquid phase is incompressible : 

p j  = const. (3) 
(b)  the vapour obeys the equation of state of a perfect gas, and being in the 

saturated state a t  the interface it obeys the Clapeyron-Clausius equation 

Here T is the absolute temperature, B is the gas constant, 1 is the specific heat of 
vaporization, the symbol CT referring to the parameters a t  the interface. 

The assumption that the carrier liquid is incompressible is valid when the wave 
velocity U ,  relative to the medium before the front, and the volume fraction of the 
vapour phase satisfy the conditions (U/ae)' < 1 and a, % a, = po/p:aj, respectively 
(Nigmatulin & Shagapov 1974). In  this case the mixture is compressed a t  the expense 
of the compression of the vapour in the bubbles. Under normal conditions, p - 0.1 
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MPa, the above conditions hold for most liquids when the volume fraction of the 
vapour phase 01,k 

Transfer processes in a two-phase mixture are determined by the distributions of 
microparameters near inhomogeneities. For an analysis not to be too complicated, 
one has to make use of models that could considerably simplify the microprocess 
equations. A possible model is one that employs the concept of a cell with a test 
bubble in it at any point specified by a vector y .  The cell dimensions are determined 
by the volume fractions of the phases and equal to Ra;;, the cell centre coinciding 
with the centre of the test bubble. This cell moves with the macroscopic velocity 
v(t ,y) of the vapour phase a t  the point considered. The distributions of 
microparameters inside a cell are described by the equations for the corresponding 
microprocesses with the boundary conditions on the test bubble surface (which 
determine the interphase interaction) and on the external boundary of the cell (which 
determine the action of the external, relative to the cell, carrying phase). 

Consider a spherically symmetric test bubble with its centre at a point y, the 
microparameters (marked by primes) inside and around the bubble being dependent 
on time t ,  the position of the bubble centre y, and the distance r of a microparticle 
from the centre (or only on t and r in the Lagrangian system of coordinates moving 
together with the bubble with velocity v) : 

In spite of the non-uniformity of the vapour temperature and density fields inside 
the bubbles we consider the vapour pressure field to be uniform (homobaric 
conditions), which is valid provided that (w,,/a,)2 4 1 (Nigmatulin 1978). Here w,, 
is the mass velocity of the vapour on the bubble surface, a, is the velocity of sound 
in the vapour. 

To determine the temperature, density and heat-flux distributions, we use the 
equations of discontinuity, heat conduction and the equation of state. The vapour 
and the liquid at the interface are assumed to be in thermodynamic equilibrium. The 
phase transition rate j may be found from the boundary conditions on the bubble 
surface. The boundary conditions at the bubble centre may be determined from the 
condition of finite heat flux, temperature and density. In the absence of a 
macroscopic heat flux in the carrying phase the condition on the cell boundary 
should reflect the cell adiabaticity. The system of equations describing the 
distributions of the microparameters inside and around the test bubble and the 
boundary conditions in the system of coordinates ( t ,  5, r )  are as follows : 
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where w‘ is the velocity of radial motion, cpv is the specific heat a t  constant pressure 
of the vapour, A is the thermal conductivity, qco and qv, are the heat fluxes to the 
liquid and vapour, respectively, from the interface. Subscript s refers to saturation. 

It should be noted that an allowance for the microparameter distributions makes 
the solution to the problems of wave dynamics in bubbly liquids much more difficult. 
Even the simplified account of the temperature microdistribution inside and around 
the bubbles for a one-dimensional unsteady flow of bubbly mixtures (under the 
assumption of a spherical symmetry of the microprocess, and with no allowance for 
the influence of the relative motion of the bubbles) considered here leads to the 
necessity of solving a system of partial differential equations in three independent 
variables. 

We note a principal difference in the description of heat exchange between a ‘ cold ’ 
liquid and gaseous bubbles without phase transitions on the one hand, and between 
a ‘hot ’ liquid and vapour bubbles with condensation and evaporation on the other 
hand. In  the case of gaseous bubbles in a ‘cold’ liquid the change of pressure pv( t )  in 
the bubble depends on interphase heat exchange. In  this case lqv,l = Iqc,,/ and heat 
exchange is determined by the heat resistance of the gas but not of the liquid, i.e. by 
the internal heat problem (Chapman & Plesset 1971 ; Nigmatulin & Khabeev 1974; 
Plesset & Prosperetti 1977; Nigmatulin, Khabeev & Nagiev 1981). In the case 
of vapour bubbles in a ‘hot’ liquid the change in pv( t )  depends primarily on 
the intensity of evaporation and condensation j = - (ae, + qvu)/Z. In  this case 
Iqv,l < Iqc,l because under conditions which are far from critical the following 
estimates are usually valid : 

p; % p:, A, % A,, 9” % Be, 

where D is thermal diffusivity 

Therefore there is no need for the exact calculation of qv, because the process is 
mainly determined by qcu, the calculation of which requires that nonlinear equation 
(5) of non-stationary heat conduction in liquid be solved. It thus follows that the 
evolution of pressure waves in a ‘hot’ liquid with vapour bubbles is determined by 
the thermal diffusivity of the liquid rather than of the gas. 

For this reason the uniform-bubble model is widely used in investigations on the 
dynamics of vapour bubbles in a ‘hot ’ liquid, which corresponds to the asymptotic 
case of the equation of heat conduction in the vapour (second equation in ( 5 ) )  at 
DV+m or, more precisely, when the wavelength of the ‘thermo-diffusion wave ’ in the 
vapour Dv/wv is far larger than the bubble radius R :  

Even in cases when the above condition does not hold true (Dv/wv R 2 1) the 
uniform-bubble model, which leads to significant errors in calculating qv,, does not 
give appreciable errors in calculating j and pv(t)  because lqvul < IqJ. 

The applicability of the model of a uniform vapour bubble has been investigated 
in detail (Nigmatulin & Khabeev 1975; Nagiev & Khabeev 1981). A comparison of 
the calculations made with allowance for the bubble-temperature non-uniformity 
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(Dv/wv R N 1) with the calculations in terms of the uniform-bubble model has shown 
that taking account of temperature non-uniformity and the refinement of q,, have 
an insignificant effect on the bubble dynamics, provided the conditions are far from 
the critical ones. 

At high parameters values when the thermophysical properties of the gas and 
vapour become close, and for regimes when Dv/w, R 4 1 the assumption about the 
bubble uniformity is unjustified and may lead to significant errors. This assumption 
is not important when the problem is solved numerically and is given here as a 
possible way of simplifying the calculations when the exact calculation of qv, is not 
necessary. 

The variants presented in the paper were also calculated without using this 
simplification. 

Within the framework of a uniform bubble containing a saturated vapour 
T, = T,(p,(t)), the heat flux qv, = A, aTv/ar I R  spent on a change in vapour saturation 
temperature caused by a pressure changes is non-zero because the uniform-bubble 
model corresponds to the asymptotic condition Dv+ m, aT,/ar+ 0. In this case 
D,aTV/ar + 0 because we have an indeterminacy of the type 

For qv, to be calculated in terms of the model of a uniform bubble filled with 
saturated vapour, we use the equation of the heat flowing to the vapour phase (the 
second equation in system (5 ) ) .  Substituting the total derivative of the saturated- 
vapour temperature by the derivative of the pressure according to (4), and 
integrating this equation with respect to r within the limits from 0 to R we arrive 
a t  

x 0. 

where cs is the vapour specific heat along the phase equilibrium curve (Landau & 
Lifshitz 1976) : 

For most liquids, particularly for water, under normal conditions ( p  N 0.1 MPa) 
cs < 0. This means that for vapour to remain in a saturated state when it is 
compressed, heat should be abstracted from it. For water cs = 0 a t  p N 3 MPa. 

The pressures of the phases and the bubble radius are related by the condition of 
simultaneous deformation, as described by the Rayleigh-Plesset equation 

(7) 

where v, is the kinematic viscosity. 
In  terms of the cell model (Nigmatulin 1978, 1979) corrections for the 'non- 

singleness' of the bubble may be introduced into (7). These corrections characterize 
the difference of the fictitious pressure p a  a t  infinity from the average pressure p ,  in 
the liquid. Numerical calculations have shown that the introduction of these 
corrections has a slight effect on the structure of the shock wave in a bubbly medium 
(Zuong Ngok Hai et al. 1982). 

4 FLM 186 
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Using (4)-(7), the equation for a change in the mass of an individual bubble can 
be written in the following form 

where y is the specific heat ratio. 
Let us transform (1) to a form suitable for numerical integration. From the 

equations of conservation of the masses of the phases and bubble number density one 
can obtain, subject to assumption (iii), differential relationships for determining the 
velocity and density of the mixture 

By differentiating the equation of conservation of momentum with respect to E ,  the 
first equation in (9) with respect to t and equating the mixed derivatives, a2v/at a( 
and a2v/a[at, we obtain, if (7) is taken into account, the following differential 
equation for the average pressure : 

where 

It represents an elliptic equation. Note that, according to this equation, pressure 
disturbances propagate with an infinite velocity. This is the consequence of the 
incompressibility of the carrier liquid which transmits pressure disturbances. The 
influence of the bubbles and vapour properties is exhibited through the function 
K = K(R,,  we,, pv ,  p )  in which R,, wdo and pv can be determined from (7) and (8).  The 
infinite velocity of disturbance propagation in the carrier liquid is the frozen sound 
speed in a given two-phase dispersion medium (the phase velocity of sound depends 
on the frequency of disturbances). 

Equations (9) and (10) allow us to determine the velocity and pressure fields of the 
mixture a t  fixed instants through the known fields of the remaining parameters. 

3. Results and discussion 
To investigate the main regularities of the propagation of plane non-stationary 

shock waves and the evolution of pulse disturbances in vapour-liquid bubbly media, 
we used the closed system of equations (2)-(  10). The corresponding mathematical 
problems consisted in finding solutions of the system (2)-(10) (by numerical 
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integration), subject to the following initial and boundary conditions at specified 
cross-sections for the volume of mixture chosen (5 = 0, 5 = L ) :  

( t  = 0) ; 1 2a 
p ,  = p,; p ,  =Po+-; R = R,; 

RO 

The propagation of short pressure delta-pulses (similar to those formed during 
explosions of microcharges) was studied. The pulses were modelled by assigning 
different laws of a rapid pressure change which correspond to a linear rise and a linear 
drop of the pressure in the zone of decreasing pressure. For a detla-pulse the function 
f ( t )  is of the form 

PO(l+ b, t )  ; t < t,, 
f b ( t )  = po[(l+blt , ) -b , ( t - t , )];  t ,  < t < t2 ,  Lo; t ,  t ,  

where the constants t,, t ,  are determined by the duration of the initial pulse, and the 
non-negative coefficients b,, b, by its intensity. The case when external mass forces 
are absent, i.e. g = 0, is considered. However, an allowance for these forces, when 
numerically solving the system of (2)-( lo), offers no difficulties. 

The system of equations (2)-(10) was solved by combining the modified Euler 
method with the method of factorization. The solution of this multi-parameter 
problem is determined by the following dimensionless numbers and combinations : 

BTO Y - 1 C P V T O .  

Y 1 '  
avo; €o  =o, y ;  c,* =-- 

Q 
Pvo . 
PC 1 

which characterize the influence of the external mass forces G, capillary effects S ,  
liquid viscosity (the Reynolds number Re), thermal conductivity (the PBclet number 
P e ) ,  small relative density E~ of the vapour, its specific heat ratio y ,  specific heats of 
the phases and the specific heat of vaporization C,,, C,,, and, finally, of the shock- 
wave intensity (A€',). Here D, = h,/pjc ,  is the thermal diffusivity of the liquid, the 
subscript e refers to the parameters of the final equilibrium state (behind the 
wave). 

Under the assumptions made, y and Pe are constant, and C,, and C,, are slowly 
growing functions of pressure. If pressure differences are not too large, C,, and C,, 
may also be regarded as constants. In the absence of external mass forces the solution 
of the problem does not depend on G .  For not very small bubbles with R, 2 mm, 
in not very viscous liquids (water, for instance, when Re 9 1) the influence of the 

4-2 
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capillary effects S and viscosity Re on the wave process in a liquid with bubbles of 
an insoluble and non-condensable gas is hardly noticeable against the background of 
heat dissipation (Nigmatulin et al. 1974). The results obtained prove that for a liquid 
with vapour bubbles where the interphase heat and mass transfer plays a more 
important role, the influence of these effects on the wave process is less significant 
against the background of heat effect (Zuong Ngok Hai et al. 1982). 

The calculation results were checked by comparing the steady structure realized 
after a sufficiently long evolution of non-steady shock waves with the same structure 
calculated by another method of stationary theory (Zuong Ngok Hai et al. 1982). 
Test calculations €or the particular case when mass transfer is absent have been 
carried out. The solutions obtained were compared with the results of investigations 
of waves in a liquid with bubbles of an insoluble and non-condensable gas 
(Gubaidullin et al. 1976). The calculation results were also verified by comparison 
with the solutions to the problem of unsteady thermal conduction around a sphere 
of constant radius (Carslaw & Jaeger 1959) and the dynamics of a single vapour 
bubble in a variable pressure field (Nigmatulin et al. 1981). 

Figure 1 illustrates, to the same scale and under the same conditions, the evolution 
of a shock wave in water with ( a )  bubbles of an insoluble and non-condensable gas 
(air) a t  To = 293 K and ( b )  in water boiling at To = 373 K with vapour bubbles for the 
case of steady boundary conditions on f [  = 0; p(0 ,  t )  = pe  = const. a t  L + +  co. The 
strong influence of the interphase mass transfer on the propagation of pressure waves 
in vapour-liquid media is evident. In  liquids with gas bubbles ( R  - 1 mm) the time 
and distance required for shock waves to achieve their steady structure are several 
milliseconds and metres, respectively (Gubaidullin et al. 1976), whereas these 
quantities are much smaller in liquids with vapour bubbles. The steady configuration 
of the waves in figure 1 (b)  is achieved a t  a distance of about 0.4 m for about 5 ms. 
In  this case the oscillation amplitude decreases, and the wave propagation velocity 
is practically constant. 

The investigation of non-stationary shock waves in different liquids with vapour 
bubbles shows that the initial stage of propagation of waves with finite intensities is 
always an oscillatory one. Then the wave acquires a steady configuration which in 
the case of water at 0.1 MPa and R, N 1 mm (the corresponding values of the basic 
dimensionless parameters are given in table 1) is monotonic for waves with intensities 

The influence of the initial parameters and perturbation parameters of the mixture 
on the wave evolution has been investigated. It is found that with an increase in the 
initial void fraction the velocity and wavelength of oscillatory waves decrease. The 
distance travelled by the waves before their steady propagation is achieved changes 
as their velocity varies, the time required for the waves to become steady being 
practically unchanged. With an increase in the initial diameter of the bubbles, other 
conditions being equal, the oscillation amplitude and the oscillatory wavelengths 
behind the front grow, the time and distance for reaching steady configurations 
increase. An increase in the shock-wave intensity leads to an increase in its velocity 
and an increase in the amplitude and frequency of oscillation of the parameters 
behind the front. In  this case the time taken to reach the steady configuration 
decreases while the corresponding distance remains practically unchanged. An 
increase in the initial static pressure po of the mixture leads not only to an increase 
in the velocity of shock waves with the same dimensionless intensity (Me) but also 
to an increase in the lengths and amplitudes of oscillatory waves behind the wave 
front, 8s well as in the distance of transition to the steady regime. This is connected 

of Me 5 1. 



Waves in liquids with vapour bubbles 95 

4 

3 
P - 
PO 

2 

1 

Y (m) 
FIGURE 1. Shock-wave evolution in (a )  water with bubbles of air and ( b )  water vapour: p ,  = 0.1 
MPa, R, = 1 mm, Me = 2 ,  a,, = 0.02. Curves 1 4  correspond to times t = 0.2, 1, 3 and 6 ms; 
-.-.- , envelope of pressure peaks. 

with an increase in the initial mass of the bubbles and with the slowing down of 
condensation (Zuong Ngok Hai et al. 1984). 

In  waves of moderate intensities (Me - 1-10) the medium parameters vary over 
a sufficiently wide range. An analysis of the dimensionless equations obtained shows 
that when c, = p:/pj 4 1, the effect of eo on the wave process can be expressed in a 
combination with GIl*. In  this case the basic similarity criteria in this class of 
problems are the dimensionless wave intensity Me and dimensionless numbers and 
combinations Pe, Cd*/eo, y ,  C,, which express the influence of the interphase heat and 
mass transfer (heat dissipation) on the process. 

The values of the basic dimensionless numbers and combinations for two-phase 
single-component systems are listed in table 1. 

From table 1 it is seen that the parameters y and C,, exhibit a slight dependence 
on medium. For this reason Pe and Cl*/co, together with the wave intensity, are the 
main similarity criteria in modelling wave processes in these media, the parameter 
being E,, easily changed since a change in p ,  contributes considerably to a change in 
Cd,/so.  These similarity criteria allow us to use vapour-liquid media, direct 
experiments with which are either expensive or impossible. From table 1 it is also 
clear that the wave picture in a mixture of boiling water with vapour bubbles must 
resemble that in a mixture of liquid nitrogen with vapour bubbles when the initial 
pressure in the first mixture increases. 

Figure 2(a) illustrates the evolution of a shock wave in liquid nitrogen with vapour 
bubbles, Comparison with figure l ( b )  shows the decisive influence of the ratio eo of the 
densities of the phases and the thermophysical properties of the liquid on the wave 
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Vapour- c,, 
eo P e x  

liquid Po To Ro 
medium (105Pa) (K) (mm) cox lo3 C,, Y c v *  

Water 0.5 354 1 0.34 0.51 1.31 0.071 1500 0.44 
1 373 1 0.6 0.70 1.28 0.076 1130 0.61 
5 424 1 2.9 0.86 1.24 0.090 301 1.34 

Freon-21 1.85 299 1 6.1 1.40 1.19 0.096 230 1.60 

Nitrogen 1 77.35 1 5.7 0.76 1.32 0.086 133 1.89 

Freon-12 7 30 1 1 31.0 2.03 1.18 0.118 65 4.30 
13 326 1 62.6 3.00 1.24 0.140 48 7.23 

TABLE 1 .  The values of the basic dimensionless numbers and combinations for two-phase 
single-component systems 

evolution in vapour-liquid bubbly media. An increase in eo and Pe implies an increase 
in vapour mass in bubbles and a slowing of the interphase heat and mass transfer. 
This leads to an increase in the time and distance of wave transition to the limiting 
steady configuration, to an increase in wave thickness and to a stronger tendency 
towards oscillations in a wave, which are characteristic of wave propagation in a 
liquid with bubbles of an insoluble and non-condensable gas (figure l a ) .  The non- 
steady wave in liquid nitrogen with vapour bubbles presented in figure 2(a) exhibits 
a pronounced oscillatory structure. The wave acquires a monotonic steady structure 
at a distance of the order of 10 m, the wave thickness reaching the order of 3 m (see 
figure 2b). 

From figure 2 ( a )  it  is also seen that at the initial non-steady stage of wave 
propagation the pressure in the wave can exceed the pressure behind the wave 
(enhancement effect). In  this case a maximum enhancement is not observed 
immediately after the wave initiation and not necessarily in the first peak of pressure 
pulsation. The dash-dotted line in figure 2(a)  is the envelope of the pressure peaks. 
An increase in pressure a t  the non-steady stage of shock-wave propagation in these 
media becomes more pronounced with an increase in the initial pressure in the 
system and in shock intensity. For waves with an intensity of A€', = 4 (p ,  = 0.1 MPa, 
R, = 1 mm, a,, = 0.05, C,,/e, = 1130, Pe = 61 x lo3) in boiling water with vapour 
bubbles a t  the non-steady stage, the estimated pressure increase is 

u r n a x  = ( p r n a x - ~ o ) / ~ o  = 7 2 U e  

(Zuong Ngok Hai et al. 1984). A more significant enhancement of waves of higher 
intensity was observed experimentally by Borisov et al. (1977, 1982), bubble 
fragmentation and vapour-condensation acceleration contributing to this. In  the 
absence of bubble fragmentation the maximum enhancement will occur a t  Pe = 0, 
which provides the Rayleigh regime of collapse ( p ,  = const). According to the 
solution (Nigmatulin et al. 1982) 

For the above values of the parameters the pressure increase reaches - 13pe, i.e. 
Urn,, = is@,. 

If nucleation, fragmentation and coagulation of the bubbles are absent, the length 
of the wave transition zone (distance of wave transition to a steady configuration) 
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FIGURE 2.(a) Shock-wave evolution in liquid nitrogen with vapour bubbles: p ,  = 0.1 MPa, R, = 
1 mm, AP, = 1, a,, = 0.05. Curves 1 4  correspond to times t = 0.49; 0.90; 1.80; 3.15; 4.95 and 
6.75 ms;-.--.- , envelope of pressure peaks. ( b )  Structure of steady shock wave, Me = 1, in liquid 
nitrogen with vapour bubbles: p ,  = 0.1 MPa, R, = 1 mm, a,, = 0.05. 

x (m) 

strongly depends on the mixture structure and changes rather weakly with the wave 
intensity change. An analysis of the results obtained and of the dimensionless 
quantities has shown that the transition-zone length is expressed by the following 
formula : 

In  the case of a vapour-water mixture when Pe = 61 x lo3, Cd*/e0 = 1130, dependence 
(13) quite well approximates the results of calculations a t  fst z 55, viz. a t  APe - 1, 
R, - 1 mm, a,, - L,, is of the order of 0.3 m. For some other cases the change 
in the wave transition-zone length L,, which depends on interphase heat and mass 
transfer, is presented in table 2. Since the parameters y and C,, vary but 
insignificantly with medium, they can be omitted in the functional dependence (13). 
The results listed in table 2 were calculated for mixtures of avo = 0.05 and waves with 
an intensity of APe = 1. 

From table 2 one can see a strong influence of interphase heat and mass transfer, 
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Vapour- 
liquid Po Ro - c/* Lst Ax x lo2 
medium (lO6Pa) (mm) e0 P ~ X ~ O - ~  (m) fst  (m) flu 

Water 0.5 1 1500 0.44 0.12 26 1 2.2 
1 0.1 1130 0.06 0.005 11 0.1 2.2 
1 1 1130 0.61 0.25 55 2 4.5 
1 10 1130 6.10 7 154 40 9 
5 1 301 1.34 6 1320 15 35 

Nitrogen 1 1 133 1.89 10 22x103 50 120 

TABLE 2. The wave transition-zone length and the steady shock-wave front thickness for two-phase 
single component systems. 
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FIGURE 3. Comparison of calculated shock-wave evolution in a vapour-liquid mixture of freon-21 
with experimental data by Nakoryakov et al. (1984). ---, theory; -, experiment. Curves 1-3 
correspond to cross-sections y = 0.11 ; 0.36 and 0.46 m. 

mainly via the parameters Pe and Ct,/eoo, on the length of the wave transition zone. 
The transition time t,, is related to the length of the wave transition zone as 
follows : 

The zone of pressure increase in a wave under normal conditions (po - 0.1 MPa) is 
very narrow for many mixtures. This zone becomes wider with a decrease in the 
intensity of the interphase heat and mass transfer and with a wave velocity increase. 
When the initial pressure in water with vapour bubbles is increased from 0.1 to 
0.5 MPa, the width of the zone, in which enhancement of waves with an intensity of 
A€’, = 1 occurs, changes from 1 cm to 10 em. In  liquid nitrogen with vapour bubbles 
the width of the zone is about 0.4 m (figure 2a).  In  the general case the width of this 
zone is a complex function of the parameters determined by nonlinear and 
dissipative effects in the medium, Me, Pe, C,,/e,,, y ,  C,, ; see ( 1 2 ) .  
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FIGURE 4. Evolution of delta-pulse in water with vapour bubbles: p ,  = 0.1 MPa, R, = 1 mm, 
emax = 2, avo = 0.05, to = t ,  = 2t, = 2 ms. Curves 1-5 correspond to times t = 1 ; 1.5; 2 ;  3 and 
6.5 ms; -.-.- , envelope of pressure peaks. 

Figure 3 presents a comparison of the calculated pressure profiles in shock waves 
in liquid freon-21 with vapour bubbles (dashed curves) with the experimental profiles 
in cross-sections of the shock tube positioned at different distances from the free 
surface of the working section (solid curves) (Nakoryakov et al. 1984) with p ,  = 0.1 
85 MPa and hp, = 0.4. The average initial radius of the bubbles is 1.2 mm, and the 
initial vapour content is 0.01 ; in this case the initial state created is similar to the 
condition of a monodisperse and equilibrium mixture. In this experiment the wave 
failed to reach the steady regime of propagation owing to the limited length of the 
experimental section. It is clear that the pressure pulsations observed in the 
experiment are fairly well described by the numerical solutions of the system of 
differential equations (2)-(11). The results of the measurements cover a time interval 
till the moment when the shock wave reflected from the bottom of the low-pressure 
chamber reaches the transducers. 

In spite of some spread in diameter of the bubbles and their non-sphericity 
observed in the experiments, calculations within the framework of the model of the 
monodisperse mixture with spherical bubbles are in satisfactory agreement with 
experiment as far as the amplitude, frequency and number of oscillations in the wave 
are concerned. 

The evolution of a pulse disturbance of finite duration depends not only on the 
above parameters but also on the type of pulse and its duration to or on the 
wavelength Lo = Uoto. Thus, a new parameter d = Lo(atoavo)~/R reflecting the 
influence of the dispersity of a mixture of a liquid with vapour bubbles is added to 
the list of basic parameters. Depending on this parameter, the other parameters 
Urn,, = (prnax-po)/po,  Pe,  Ct*/eO etc. being fixed, the delta-pulse can be transformed 
into solitary waves (solitons) or into an oscillation train (wave packet) (Nakoryakov 
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FIQURE 5. Evolution of delta-pulse in liquid nitrogen with vapour bubbles : p ,  = 0.1 MPa, R, = 1 
mm Me = 2, a,, = 0.05, to = t ,  = 2t, = 2 ms. Curves 1-5 correspond to times t = 0.9; 1.8; 2 .7;  4.0 
and 6.4 ms; -.-.- , envelope of pressure peaks. 

et al. 1984). For low dissipation in the absence of phase transition one can find a d,, 
(Berezin & Karpman 1966) such that a t  d > d,, the perturbation is transformed into 
solitary waves, and at d < d,, into an oscillation train. In the case of strong 
dissipation, significant nonlinearity and in the presence of phase transition, wave 
evolution strongly depends not only on d but on these processes as well. However, a t  
fixed Urn,,, Pe, Cc*/co one can determine the value of d,, experimentally or 
numerically even in these cases. The condition d + + w  or Lo++w means a 
transition from a pulse disturbance of finite duration to a shock wave. Figure 4 
illustrates a typical wave picture of the delta-pulse evolution. The profiles of pressure 
and bubble radius in a mixture of boiling water with vapour bubbles a t  different 
times are presented. The dash-dotted line is an envelope of pressure peaks at  different 
times. In this case Pe = 61 x lo3; CL*/cO = 1130; d x 67. It can be seen that the pulse 
evolution in vapour-liquid media is characterized by a stronger damping than in 
gas-liquid media owing to the significant influence of the interphase heat and mass 
transfer. At a distance of the order of 0.1 m the pulse amplitude is only half the initial 
value, whereas at a distance of the order of 0.5 m the pulse is practically not 
observed. In this case the perturbation is oscillatory at the initial stage but owing to 
a strong influence of the interphase heat and mass transfer it goes over into a solitary 
wave and damps quickly. 

An estimation shows that in this case the time of bubble collapse due to vapour 
condensation (At, - 10-l~)  considerably exceeds the pulse action time (At - 10-3s). 
For this reason, when the bubbles contract owing to an increase in pressure in the 
liquid, their mass under the conditions of figure 4 varies insignificantly, and the 
bubbles begin to expand in the zone of decreasing pressure. Condensation gives way 
to evaporation since the bubble surface temperature drops rapidly as the pressure 
decreases (T' = Ts(pv)), whereas the near-wall liquid is still warm, and the heat flux 
from the liquid to the interface changes its sign. Though the bubble equilibrium 
defined by (1 1) is unstable, the characteristic time of the development of instability 
is much longer than the pulse action time. As a result, instability fails to manifest 
itself for this period of time. 

This explains the fact that the bubbles return to practically their initial 
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FIQURE 6. Comparison of calculated evolution of delta-pulse in water with vapour bubbles with 
experimental data by Pokusaev (1979); p ,  = 0.5 MPa, R, = 1.4 mm, W,,, = 0.2, a,, = 0.015. ---, 
theory; -, experiment. Curves 1 4  correspond to the following coordinates of the shock-tube 
sections measured from the free surface of the working section; y = 0; 0.05; 0.15 and 0.23 m. 

dimensions after the shock pulse has passed. The damping of the delta-pulse strongly 
depends on its initial duration. More intense and longer pulses exhibit a lower 
damping. During the evolution of the delta-pulse as well as during the propagation 
of non-steady shock waves the effect of pressure increase in the mixture, as compared 
to the initiating pressure, is observed. 

Figure 5 illustrates the evolution of the delta-pulse in boiling liquid nitrogen 
containing bubbles with saturated vapour. A pronounced pulsatory character of 
wave propagation is seen. Calculations show that in this medium the propagation of 
the delta-pulse may be of a pulsatory character even at  Wmax = 0.4, which means 
that the interphase heat and mass transfer in it is less intense than in water. The 
evolution patern in figure 5 is similar to the soliton regime of pulse propagation in 
gas-liquid media. In this case a t  t = 1.8 and 2.7 ms (curves 2, 3 in figure 5 )  
enhancement of the initial pulse is observed. 

Of particular interest is a comparison of theoretical and experimental pressure 
profiles in short shock waves, the initial duration of which has a strong effect on the 
evolution process. Figure 6 compares the calculated evolution of a delta-pulse in 
boiling water containing vapour bubbles (dashed curves) with experimental data 
(Pokusaev 1979) (solid curves). One can see good agreement between the 
experimental and calculated pressure profiles. 

Thus, a comparison of a set of experimental pressure profiles with calculated ones 
showns that the theory is applicable as an adequate description of the evolution of 
long and short shock waves on condition that they are not very strong and there is 
no intense fragmentation of bubbles. 
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4. The structure of steady shock waves 
The steady shock wave is realized as a result of a steady or sufficiently prolonged 

action on the mixture. To study steady shock waves, one may use the above system 
of differential equations (2)-( 10). Depending on different factors (basic parameters 
avo, AP,, Pe, Ce*/eo) a steady wave can form at distances from several centimetres to 
dozens of metres. The relaxation time can amount to dozens of milliseconds, and the 
wave thickness to several metres. In  the general case the evolution of shock waves 
also depends on y ,  Cv*, S, Re, etc., see (12). However, the steady configuration of 
shock waves can be readily found in the system of Eulerian coordinates connected 
with the wave in which the latter is motionless. In this coordinate system differential 
equations (l) ,  (5) and (7) simplify to 

d d d 
- (pv) = 0; 
dx dx dx 

- (pvv)  = 47cR2nj; - (nv) = 0;  

d 
dx 
-(pvZ+p)=O; p:ce 

dWIU RV --I- 
dx 

dR 
v- = w +3 = 

dx P? 

the other equations and relationships being unchanged. In this case the equation of 
conservation of the mass of the mixture is used in (1) instead of the equations 
expressing a change in the mass of the liquid phase. An investigation of the structure 
of steady shock waves in a mixture of a liquid with vapour bubbles implies seeking 
the solution to (15) with the following boundary conditions : 

p = p ,  = const. 

The existence of this solution means the existence of steady waves. During the 
propagation of shock waves of finite intensity in a liquid mixture with vapour 
bubbles the temperature of the medium behind the wave increases, mainly owing to 
the release of heat due to vapour condensation in the bubbles. Under normal 
conditions, p - 0.1 MPa, for most substances a t  small void fractions a, - lo+, this 
increase is low: 

a P:1 
I4 CL 

AT - N lo-' K. 

The temperature also increases owing to the transformation of the kinetic energy of 
small-scale motion around the bubbles into heat. The kinetic energy of small-scale 
motion is given by the expression (Nigmatulin 1978, 1979) 

k, = 2aR3nw& = $avo u~p2~. 
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The kinetic energy of small-scale motion is maximum in the case of bubble collapse 
in the inertial Rayleigh regime, and in this case 

k;R) avo(Pe-Po) 
P? 

Even if this energy is completely transformed into heat, an increase in the medium 
temperature is small : 

For this reason, the average medium temperature behind the shock-wave front does 
not in practice differ from the initial To, i.e. the medium in front of and behind the 
wave has the same temperature, but different pressures : a two-phase vapour-liquid 
mixture in front of the wave and single-phase subcooled liquid behind the wave. 

The system of differential equations (15) has first integrals 

pw = powo;  nw = nowo; pv2+p = pot$+p0; (17) 

from which one can obtain the structure of steady shock waves in parametric 
form : 

From the first expression of (18) it follows that p ( x )  < pe. The estimation obtained 
shows that, unlike unsteady waves, the pressure in steady shock waves in a liquid 
with vapour bubbles cannot exceed the pressure behind the wave pe ,  i.e. the effect of 
wave enhancement cannot occur in a steady wave. An insignificant enhancement of 
steady shock waves can take place in an incompressible liquid with gas bubbles of 
constant mass because, as a result of pulsations, the bubbles may pass over the final 
equilibrium state (Zuong Ngok Hai et al. 1982) : 

It is seen that in this case the pressure within a wave cannot exceed the pressure 
behind it by an amount equal to the initial pressure. This enhancement ( p  > pe)  
becomes more significant in unsteady waves in the region of their initiation. 

From the first integrals of conservation of mass and momentum of the mixture it 
also follows that 

i.e. p = f ( p ) .  This relation is the consequence of the hydrodynamic equations and 
means that the mixture pressure within steady waves is a function of the mixture 
density only. The equation of state of the medium obtained from the third relation 
in (18) and from the Rayleigh-Plesset equation is of the form 
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Equations (19) and (20), under certain boundary conditions, completely determine 
the steady wave structure. Though the parameters do not vary with time at each 
point in space, all the parameters of a fixed material particle, including a test bubble, 
are time-dependent. This non-stationarity has a marked effect on heat and mass 
transfer. In the general case the solution to these two equations can be obtained only 
numerically owing to their complex nonlinearity (and because it is necessary to solve 
the non-stationary nonlinear heat problem in the liquid). However, in some limiting 
cases this solution can be obtained by a simpler method. When the pressure within 
the bubbles is constant, py = const (i.e. when they collapse in the inertial Rayleigh 
regime), which is realized if the liquid thermal conductivity is sufficiently high 
(At++ co), the solution of this system can be expressed in the form of the integral 
(Nigmatulin et al. 1982) 

x = I  dR. 

In this limiting case the structure of steady shock waves is entirely determined by 
(18) and (21). Some other cases could also be considered when simple dependences of 
pv on other parameters occur. 

To investigate the asymptotic behaviour of the solution of (15) in the 
neighbourhood of the initial equilibrium state, these equations need to be linearizeed 
with respect to the values of the parameters at the point 0. Their solution is sought 
in the form of an exponential damped as x --f - co 

@ = Q0+A,exp(hx); Reh > 0. (22) 

In this case @ is any parameter to be sought. After linearization we obtain from (15) 
a system of linear homogeneous equations in the amplitudes A,. The condition of the 
existence of a non-trivial solution to this system leads to an algebraic equation of 
sixth order with respect to H = (hv,)i. It has been proved (Zuong Ngok Hai et al. 
1982) that a t  A€’, > 0 (shock wave) the desired solution exists and is unique. This 
proves that in the presence of interphase heat and mass transfer there exists a unique 
solution of (22) for all A€’, > 0. The states in front of (x = - co) and behind the shock 
wave (x = + 00) are equilibrium ones, which is why an analysis of the asymptotic 
behaviour a t  x --f - co is necessary to ‘get away ’ from the singular point. The integral 
curve connecting these two states and determining the structure of the steady shock 
wave is found by the numerical continuation of the linear solution obtained in the 
neighbourhood of the singular point. 

The integral curves of the system of basic equations (15) allow displacement along 
the x-axis. Therefore, for x = 0 we fix some value of the dimensionless radius of the 
bubble R, = R/Ro, which must be taken sufficiently close to 1 in order that the 
linear solution holds in the region x < 0. From the system of linearized equations (15) 
one can, given the amplitude of the perturbation of the bubble radius and the value 
h of the root of the dispersion equation, determine the values of the remaining 
amplitudes a t  x = 0. These quantities determine the boundary conditions for 
numerical solution of the nonlinear problem in the region x > 0. An analysis of the 
second singular point, which corresponds to the equilibrium behind the wave, can be 
made in a similar manner. 

Figure 7 presents the calculated structures of steady shock waves (profiles of 
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FIGURE 7.  Structure of steady shock waves in water with vapour bubbles: p ,  = 0.1 MPa, R, = 1 
mm. Curves 1-6 correspond to different wave intensities: AP, = 0.4; 0.6; 0.8; 1.0; 1.4 and 2.0, 
- avo = 0.05; ---, avo = 0.01; hp, = 2, ..., averaged pressure profiles. 

pressure and bubbles radius) in boiling water with vapour bubbles. For weak waves 
with a monotonic structure the phase pressures are equal, p ,  = pe. In  the case of 
oscillatory waves the pressure in the vapour phase pulsates synchronously with the 
pressure in the liquid but with an appreciably greater amplitude (figure 8). In this 
case the dimensionless heat flux expressed through the Nusselt number 

(Zuong Ngok Hai & Khabeev 1983) and the kinetic energy of small-scale motion of 
the liquid around bubbles Lr = 1.5w?,av(l -a$) are of an oscillatory nature. In 
contrast to shock waves in a liquid with bubbles of an insoluble and non-condensable 
gas (Nigmatulin & Shagapov 1974) when steady waves with an intensity of AP, 2 y - 1 
have an oscillatory structure, the existence of mass transfer significantly enhances 
the tendency of the waves to have a monotonic structure and widens the range of 
intensities for which such a structure is realized. In the case presented in figure 7 the 
dimensionless critical intensity of the waves We, is approximately equal to 1 : steady 
shock waves with an intensity of APe > hp,, have an oscillatory structure and a 
steady shock wave with an intensity of less than APc, has a monotonic structure. It 
is obvious that in the case of vapour bubbles this dimensionless critical intensityof 
waves strongly depends on the degree to which the vapour phase is dispersed. 
Varying the bubble initial radius R, corresponds to varying the dimensionless Peclet 
number Pe. In the general case this dimensionless critical intensity of waves We,, as 
well as d,,, is a function of the above basic parameters Pe, Ce*/Eo, etc. Figure 7 also 
illustrates the effect of the initial vapour volume fraction a,, on the structure of 
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FIGURE 8. Pressure profiles for phases in steady shock waves in water with vapour bubbles: 
p ,  = 0.1 MPa, R, = 1 mm, AP, = 2, a,, = 0.05. -, pressure profile in liquid; ----, pressure profile 
in vapour. 

steady shock waves. The dotted curve is a profile of the pressure in the wave with an 
intensity of We = 2 a t  uvo = 0.01 and other similar parameters. Comparison with the 
curve a,, = 0.05 shows that a decrease in the bubble volume fraction leads to a 
significant increase in the wave thickness. (In this case the amplitude and number of 
oscillations do not change.) An investigation of the equations obtained, (15), shows 
that this is mainly due to an increase in the velocity of the shock wave which is 
inversely proportional to a,$: 

Subject to minor changes in the medium velocity w in the wave, (18), it follows, all 
other things being equal, that the configurations of steady shock waves in a liquid 
with vapour bubbles are spatially similar to each other, the similarity coefficient 
being equal to the root of the ratio of the void fractions. In  the above two cases this 
coefficient is equal to 5 .  Calculation results presented in figure 7 prove this. 

Let the thickness of such waves be measured from the point where the medium 
pressure differs from the initial equilibrium pressure p ,  by a certain small amount, 
for example when lp-pol/lpe-pol = 3 x up to the point where it asympto- 
tically approaches the final pressure to differ from the latter by a small value, 
e.g. lpe-pl/lpe-pO1 = 3 x lo-'. Then from figure 7 one can determine the dependence 
of the thicknesses of steady shock waves on the nonlinearity parameter Me, with 
other parameters avo = 0.05, Pe = 61 x lo3, C / * / E ,  = 1130 being fixed, which 
corresponds to the previously mentioned mixture of boiling water with vapour 
bubbles. This dependence is presented in figure 9 (curve 1).  I n  this case the above 
method of determining the shock-wave thickness is adopted. From figure 9 it is seen 
that the thickness of steady (both monotonic and oscillatory) shock waves in a liquid 
with vapour bubbles nonlinearly depends on the wave intensity AP,. 
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FIQURE 9. Thickness of steady shock waves (curve 1) and thickness of their fronts (curve 2) as a 

function of intensity Me: p ,  = 0.1 MPa, R, = 1 mm, avo = 0.05 (see figure 7) .  

For waves with a monotonic structure, the thickness of the shock-wave front can 
be determined in a different way, namely 

A x  = Me/("") or At = Ape/@!) 
ax max max 

(curve 2 ,  figure 9). 
If the wave intensity increases the front thickness decreases. The minimum wave- 

front thickness is realized when bubbles collapse in the Rayleigh regime, for which 
p ,  = const or Ape --f + 00, i.e. the thickness of the shock-wave front in a liquid with 
vapour bubbles asymptotically tends to zero when the wave intensity increases to 
infinity. The behaviour of the curves in figure 9 shows that with an intensity increase 
the thickness of the wave front increases. From curve 2 in figure 9 one can see that 
in the vapour-water mixture a t  avo = 0.05, Pe = 61 x lo3, Ct*/e0 = 1130 a wave with 
an intensity of AP, = 0.2 can have a front thickness of the order of 0.2 m whereas the 
thickness of the whole wave is of the order of 1 m (curve 1 in figure 9). In  this case 
the length of the zone can reach several metres. A decrease in the wave intensity 
leads to an increase in the wave thickness and transition-zone length. This, in turn, 
leads to the fact that for weak waves, owing to the limited length of the experimental 
set-up (about 2-3 m), the pressure profiles thus obtained correspond mainly to non- 
steady waves. 

An analysis of the results obtained and of the dimensionless quantities shows that 
in order to determine the thickness of the steady shock-wave front (curve 2 in figure 
9), when a, $- a,, one may use the following expression : 

AX = 
("to a v o  

In  the case presented in figure 9 (curve 2 )  this expression approximate the 
calculated data at f, x 4.5 quite well. It is shown below that a t  a, 5 a, it is necessary 
to take account of the compressibility of the carrying liquid. Besides, as mentioned 
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FIGURE 10. Evolution of the thermal boundary layer in liquid around a bubble in the wave 
p ,  = 0.1 MPa, R, = 1 mm, AP, = 0.04, avo = 0.05 (see curve 1 in figure 7) .  Curves 1-5 correspond to 
X = 0.015 ;0.05;0.115; 0.18and0.245 m. ---, bubble boundary;-.-.- , envelope of temperature 
peaks in the liquid around a bubble. 

above, the thickness of shock waves strongly depends on the dissipation parameters. 
For example, in nitrogen for waves with an intensity of APe - 1 (figure 2 b )  the 
thickness of the steady front can reach several dozens of centimetres. And in the 
vapour-water mixture in the case a,, = 0.05, Pe = 6.1 x lo3, C,,/s = 1130 (which 
corresponds to R, = 0.1 mm) for shock waves with an intensity of Me N 1 this value 
is only of the order of several mm. The dependence of the thickness of the steady 
shock-wave front (determined by (24) )  on the dissipation parameters for some cases 
is presented in table 2. From the table it is seen that dissipative processes have a 
strong effect on the formation of the structure of steady shock waves in a liquid with 
vapour bubbles. 

An investigation of the heat in the liquid around the bubble plays an important 
role in studying wave processes in a mixture of liquid with vapour bubbles. Figure 
10 illustrates the distribution of temperature in the liquid around the bubble in the 
wave, AP, = 0.4, a t  different distances x within the wave (curve 1 in figure 7).  Dashed 
lines show bubble boundaries, and the dash-dotted curve is the envelope of the 
temperature peaks. It can be seen that the simplifying assumption frequently 
employed to calculate the dynamics of vapour bubbles, namely, that the thermal 
boundary layer in the liquid is thin, becomes invalid in the case of bubble collapse 
when the bubble radius reaches values of RIR, 5 0.4. 

Figure 11 shows that the steady structure of shock waves in water with vapour 
bubbles depends on the degree to which the vapour phase is dispersed, other things 
being equal. It is seen that an increase in the degree to which the vapour phase is 
dispersed (a decrease in the initial radius of bubbles and conservation of the void 
fraction in the mixture) causing an increase in the interphase heat and mass transfer 
role due to the specific interphase surface growth, leads to the evolution of shock 
waves from an oscillatory to a monotonic structure which is realized during bubble 
inertial collapse. In  this case the characteristic wave thickness significantly decreases 
(about 30 times). At x+- co the Nusselt number tends to a finite value: 
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FIQURE 11.  Structure of shock waves in water with vapour bubbles depending on vapour phase 
dispersity, pa = 0.1 MPa, AP, = 2, a,,, = 0.05. Curves 1-3 correspond to I?, = 1 ; 10-' and mm 
(Pe = 61 x lo3; 6.1 x loa and 0.61 x los) respectively. C t * / ~ O  = 1130 for all three cases. 

whereas in the case of vapour bubble collapse in the heat and inertial regime (curve 
Nu, in figure 11) it decreases, tending to zero at  the final stage of collapse. 

Figure 11 also shows the nature of changes in the kinetic energy of small-scale 
radial motion of the liquid around the bubble a t  monotonic collapse (curve 3) and 
collapse accompanied by vapour bubble pulsations (curve 2). It can be seen that, 
when R, = 10-1 mm (curve 2), the kinetic energy of small-scale radial motion of the 
liquid around the bubble performs damped oscillations, together with the pressure in 
the mixture becoming negligibly small a t  the final stage of the bubble collapse when 
it enters the thermal regime of collapse. In this case bubble contraction and 
expansion phases are significantly asymmetrical. During the collapse of the bubble 
with R, = low2 mm (curve 3) the specific kinetic energy of small-scale motion of the 
liquid around the bubble k, reaches - 0.3 of the limiting value k$) when the collapse 
occurs in the Rayleigh regime: 

During the collapse of the bubble with R, = lo-' mm (curve 2) the maximum value 
of k,/lciR) does not exceed 0.2. The kinetic energy of small-scale motion during vapour 
bubble collapse in the thermal regime decreases and tends to zero at  the final stage 
of collapse, and in the inertial regime it increases, as is shown in the graph, tending 
to a finite value. If we assume that during bubble collapse this energy is transformed 
into heat, the increase in the pressure due to liquid thermal expansion is insignificant. 
In the case of bubble collapse in water in the Rayleigh regime at  p ,  = 0.1 MPa, 
Me = 2, the pressure increase due to liquid heating is several thousandths of the 
initial pressure (Zuong Ngok Hai et al. 1982). If we assume that this energy of liquid 
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radial motion around the bubble a t  the moment of its collapse is converted into the 
energy of elastic compression of the liquid (Nigmatulin et al. 1982), the pressure 
increase can become significant and, as far as the order of magnitude is concerned, 
is in good agreement with the experimental evidence of shock-wave enhancement 
(Borisov et al. 1977 ; Gel'fand et al. 1978). 

For this final stage of collapse, the calculation becomes more complicated. Besides, 
a t  this stage the proposed model can become invalid because of the necessity of 
taking into account the liquid compressibility and other effects. 

The behaviour of the curves in figure 11 shows that at R + 0 the bubble surface 
velocity increases strongly, and, because of its finite thermal conductivity, the liquid 
fails to rapidly transport the heat liberated during vapour condensation. Accord- 
ingly, the condition p, = p,(T,) = const. is not satisfied. As a result, the pressure 
in the bubble grows, which can lead to an incomplete collapse of the bubble and its 
subsequent pulsations. In  this case the shock wave may have a peaked oscillatory 
structure, as was found experimentally (Deksnis 1978; Borisov et al. 1982) for strong 
shock waves. 

5. Condensation waves. Shock adiabat 
Let a stationary shock wave, the equilibrium states behind which we shall denote 

by a superscript 1, move through a motionless, relative to the wall, equilibrium 
mixture towards this wall. This shock wave is incident on the wall, reflects from it 
and moves backwards. Let us denote by a superscript 2 the equilibrium state behind 
the reflected shock wave after it reaches the steady regime. The other designations 
remain the same. It is assumed that in front of the incident wave the medium is a t  
rest (wo = 0 ) ,  behind the incident wave it acquires velocity dl), and after reflection of 
the wave from the wall the medium is again a t  rest relative to the wall (d2) = 0). 

We shall consider waves sufficiently long that equilibrium could be established 
behind each wave before another wave arrives. For this to occur, it is necessary that 
the tube length should be much larger than the thickness of a shock wave. In this 
case the carrier liquid is assumed to be compressible. If the void fraction is small 
(a, 5 ae) and the conditions are far from critical, the vapour mass can be negelected 
compared to the carrying-liquid mass, i.e. rn, = a,p:/aepj 4 1. Thus, the presence of 
the vapour phase manifests itself only in the fact that the mixture is compressible as 
a whole. The equilibrium of bubbly vapour-liquid media is unstable. That is why 
when shock waves of finite intensities propagate in such media, the vapour in the 
bubbles condenses, and the single-phase medium - liquid - is present behind a wave. 
The reflected wave will propagate in the single-phase compressible liquid. It is 
assumed that the wave reflects from a perfectly rigid wall. 

mm) the main dissipative 
mechanism is a thermal one. In  this case the necessary energetic condition for 
conservation of the bubbly structure of a mixture of a liquid with vapour bubbles can 
be written in the following form: 

ce[T(P( ' ) )  -TS(PO)I m, 1. 

Using the Clapeyron-Clausius equation (4) the sufficient condition for the mixture 
bubbly structure destruction can be written in the form 

I n  a system containing not very small bubbles (R 2 
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In  many media this condition is satisfied for waves with very low intensities. For 
water a t  p - 0.1 MPa, avo - SP is of the order of lop4. However, a decrease in 
wave intensity (PC1) + + 1 )  leads, as is shown in figure 7, to a wave with a more 
smooth structure, to an increase in its thickness. That is why the equilibrium 
pressure behind the reflected shock wave p@) due to the blurred incident shock wave 
will be reached only after a considerable period of time. Waves of low intensity can 
be considered in terms of linear theory (Trammel1 1962; Nakoryakov & Shreiber 
1979; Azamatov & Shagapov 1981). Below we shall consider only appreciably strong 
waves (P- 1 > SP). 

For the medium under consideration, the laws of conservation of masses and 
momentum of the mixture in the case of an incident wave with velocity U(l) and a 
reflected wave with velocity U(') (relative to the wall) assume the following form 
(jump conditions) : 

pou(l' = p(l)( U(1) - @ )  ; - Po = po U(l)v(l) ; 

po = aGop;o( 1 + m"o) x at0pjo, a?' = a p  = 0. 
] (26) P(l)( U(2) + v(l)) = p(2)u(2) . p ( 2 )  - Po (1) = p (1) (U(2) + v'") v(1) ; 

For waves with finite intensities (P(l)-l > SP), p(l), p(') are the densities of the 
single-phase liquid behind the incident and reflected wave, respectively. At  pressures 
p - 0.1-10 MPa the following equations of state of linear acoustics are used for 
them : 

(27) 

The parameters behind the shock wave can be expressed by known parameters in 
front of it from (26) and (27). It is easy to express the velocity of propagation of the 
incident wave through its intensity and the parameters in front of it : 

= a;(p(l)-Pjo); p ( 2 ) -  (1) = 2 (2 )  - (1) P a,(p P 1. p(l) - 

From (28) it follows that a t  a, + + co (an incompressible carrier liquid) a, +- +0,  
U(l)-tU,. From this it is also seen that the influence of the carrier-liquid 
compressibility is expressed through the last cofactor, and in order that this influence 
be negligible, i.e. the compression of the mixture be due to the compression of the 
bubbles, it is necessary and sufficient that 

For avo - 
1 .O MPa. 

pco - lo3 kg/m3, a, I- lo3 m/s this condition is satisfied if p(l)--p0 5 

For the pressure behind the reflected wave we obtain the following expression 

I 
avo 1 + (ac/avo)(P(l)- 1 )  A = - a , ( P -  1 )  
aco 1 + a , ( P  - 1 )  
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If conditions 6, < 1 and a,,,$ 4 1 are satisfied, the following simplified expression 
follows from (30) : 

It shows the degree of shock-wave enhancement in a vapour-liquid mixture due to 
reflection from a rigid wall when an incident wave causes the complete condensation 
of vapour. At  avo = 0 (31) yields the known result for a low-compressible linear 
acoustic medium 

The dependences (30) and (31) have a singularity. At 

i.e. when the wave intensity ( P I ) -  1) decreases to 0, the pressure in the medium way 
increase infinitely in the case of reflection from a rigid wall.This is explained by the 
fact that for a given bubbly structure of the mixture with P(l) ++ 1 the condition 
(25), on the basis of which (31) and (30) have been obtained, can be violated. 

In the case of a liquid with bubbles of insoluble and non-condensable gas the 
parameters behind the reflected shock wave can also be found in terms of the 
dependence on the parameters in front of the wave: 

Unlike the case of a liquid with vapour bubbles, in this case the bubbly structure 
of a mixture behind the wave is not damaged. The media behind the reflected and 
incident shock waves are also mixtures of a liquid with gas bubbles with the 
respective mean densities p(l) x up) p j ( l ) , ~ ( ~ )  x a$z)p,0(2). 

We obtain the following expression for the velocity of propagation of the incident 
shock wave : 

which was first derived by Campbell & Pitcher (1958). The problem of the velocity 
of shock-wave propagation in gas-liquid media was also discussed by Parkin, 
Gilmore & Brode (1961) who give the following expression for the shock-wave 
propagation velocity : 

which at y = 1, avo 4 1 coincides with (34). For comparison let us take the 
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FIGURE 12. Shock adiabat of reflected waves in water with bubbles of vapour (-) and air (-.-.-). 
Curves CM correspond to vapour (gas) volume fraction a,, = 0;  0.005; 0.01 ; 0.025; 0.05; 0.10 and 
0.20, respectively. The dashed line corresponds to (32), with complete condensation of the 
vapour. 

dependence of ~ ( ~ ) / p ( l )  on P(l )  for the mixture of an incompressible liquid and gas 
bubbles with constant mass, which follows from (33) 

As (31) (or (30)) shows, a considerable enhancement of the shock wave after its 
reflection can occur in a vapour-liquid medium. For example, for a vapour-water 
mixture at p ,  = 0.1 MPa (pj, x lo3 kg/m3, at x 1500 m/s) with a volume fraction of 
avo = 0.1 we have U, = 50, and after the reflection of waves with pressures p( l )  = 0.2 
and 0.5 MPa, the pressures on the wall will be equal to p(2 )  = 5.2 and 10.5 MPa, 
respectively. Besides the enhancement increases as the vapour volume fraction 
grows. 

Figure 12 presents graphs of the enhancement of plane shock waves reflected from 
a rigid wall for vapour-water, air-water and linear acoustic media together with (30) 
or (31) (solid curves), (33) (dash-dotted curves) and (32) (dashed curve). Bubbly 
liquids exhibit a strong physical nonlinearity in the medium compression due to an 
abrupt decrease of the compressibility upon the bubble volume decrease. It is seen 
that a complete condensation of the vapour in the bubbles changes the structure of 
the mixture and its compressibility and leads to an anomalous increase in pressure 
in the medium during shock-wave reflection from a rigid wall. 

It should be noted that in experiments with shock tubes it is not always possible 
to measure the pressure p(2)  owing to the specifications of the experiment. If the 
length of the relaxation zone of an incident wave is large, the rarefaction wave from 
the high-pressure chamber of the shock tube (Nigmatulin 1982) can reach the 
opposite wall before the equilibrium pressure is established. In  this case pw,  the 



114 R. I .  Nigmatulin, N .  S.  Khabeev and Zuong Ngok Hai 

maximum pressure measured on the wall, will be smaller than its expected 
equilibrium value pc2) .  Thus, the pressure p ,  measured in experiments can depend 
on several factors : initial radius of the bubbles, thermophysical properties of the 
vapour phase, wave intensity, presence or absence of effects of bubble breakup and 
so on. Other conditions being equal, the value of p ,  can also be influenced by the 
length of the high-pressure chamber of the shock tube. Note that in the case of a 
sufficient incident-wave intensity the bubbles break up, and the relaxation-zone 
length (profile blur) of the wave abruptly decreases. In  this case the equilibrium 
maximum pressures behind the reflected waves are, as a rule, established before 
rarefaction waves arrive. If bubbles remain intact in a wave, the situation changes 
sharply, since the blurring of the incident-wave front becomes stronger. 

6.  Conclusion 
A mathematical model to describe wave processes in liquids with vapour bubbles 

with allowance for the nonlinear non-steady interphase heat and mass transfer has 
been proposed. General regularities of the propagation of shock waves of moderate 
intensities and delta-pulses in these media depending on the initial conditions, 
mixture structure and thermophysical properties of phases have been studied for the 
first time on the basis of this model. It has been established that : 

(i) Thermophysical properties of the phases influence the wave evolution through 
four dimensionless parameters Pe, Ct*/eo, y ,  Cv*, whereas in the case of cold liquids 
(no phase transition) the above influence is expressed only through two dimensionless 
parameters 

(ii) The steady structure of compression waves does exist in a bubbly vapour-liquid 
medium and is unique for a given wave intensity ; the wave may be either monotonic 
or oscillatory, At p N 0.1 MPa, R - 1 mm, for most media the wave transient zone 
has a length of the order of dozens of centimetres. 

(iii) Of all dissipative mechanisms, thermal dissipation has a radical effect on the 
evolution of waves in vapour-liquid bubbly media. The distance of wave transition 
to the steady structure in a liquid with vapour bubbles is much shorter than in a 
liquid with bubbles of insoluble gas, and the wave thickness is also much smaller. 
Unlike the case of a liquid with gas bubbles, the thickness of a steady wave in a 
vapour-liquid bubbly medium is determined by the thermal diffusivity of the liquid 
but not of the gas (vapour). 

(iv) An increase in the initial static pressure of the system, wave intensity and 
initial bubble radius, and a decrease in the initial void fraction lead to an increase in 
the distance of transition to the steady structure, as well as to an enhancement of the 
tendency towards oscillations in a wave. In  contrast to steady shock waves within 
which the pressure in the mixture cannot exceed the pressure behind the wave, in the 
case of steady waves the enhancement of the originally initiated waves is 
possible. 

(v) In  the process of the evolution of ‘long’ shock waves the size of the region of 
the perturbed motion embranced by radial pulsations of bubbles, and the number of 
oscillatory peaks behind the wave front increase. In  this case the structure of 
sufficiently weak unsteady waves changes from oscillatory to monotonic, and the 
structure of stronger waves evolves to the limiting oscillatory configuration. 
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(vi) The phenomenon of the anomalous enhancement of waves reflected from a wall 
was explained by analysing jump conditions in a bubbly vapour-liquid medium. This 
phenomenon is considerably weaker in a cold gas-liquid mixture since its bubbly 
structure is not violated. 

(vii) Comparison of the results of calculations with the experimental data has 
shown that the model is suitable for describing wave processes in vapour-liquid 
bubbly media over a wide range of wave intensities and basic parameters of the 
medium. 

(viii) In spite of a significant deviation of the bubble shape from sphericity 
observed behind the wavefront, the agreement between theory and experiment is 
good. This testifies to a decisive influence of the volume but not shape of the bubble 
upon the radial motion. 
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